Mine workers threshold shift estimation via optimization algorithms for deep recurrent neural networks
نویسندگان
چکیده
منابع مشابه
Hessian-free Optimization for Learning Deep Multidimensional Recurrent Neural Networks
Multidimensional recurrent neural networks (MDRNNs) have shown a remarkable performance in the area of speech and handwriting recognition. The performance of an MDRNN is improved by further increasing its depth, and the difficulty of learning the deeper network is overcome by using Hessian-free (HF) optimization. Given that connectionist temporal classification (CTC) is utilized as an objective...
متن کاملEvolving Deep Recurrent Neural Networks Using Ant Colony Optimization
This paper presents a novel strategy for using ant colony optimization (ACO) to evolve the structure of deep recurrent neural networks. While versions of ACO for continuous parameter optimization have been previously used to train the weights of neural networks, to the authors’ knowledge they have not been used to actually design neural networks. The strategy presented is used to evolve deep ne...
متن کاملDeep Recurrent Neural Networks for Acoustic Modelling
We present a novel deep Recurrent Neural Network (RNN) model for acoustic modelling in Automatic Speech Recognition (ASR). We term our contribution as a TC-DNN-BLSTM-DNN model, the model combines a Deep Neural Network (DNN) with Time Convolution (TC), followed by a Bidirectional LongShort Term Memory (BLSTM), and a final DNN. The first DNN acts as a feature processor to our model, the BLSTM the...
متن کاملDeep Recurrent Neural Networks for Supernovae Classification
We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae. The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep n...
متن کاملTraining Deep Neural Networks via Optimization Over Graphs
In this work, we propose to train a deep neural network by distributed optimization over a graph. Two nonlinear functions are considered: the rectified linear unit (ReLU) and a linear unit with both lower and upper cutoffs (DCutLU). The problem reformulation over a graph is realized by explicitly representing ReLU or DCutLU using a set of slack variables. We then apply the alternating direction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2019
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2019.09.174